

CONFIGURATION HANDBOOK

LOREME 12, rue des Potiers d'Etain Actipole BORNY - B.P. 35014 - 57071 METZ CEDEX 3 Phone 03.87.76.32.51 Contact : Commercial@Loreme.fr - Technique@Loreme.fr Download manual at : www.loreme.fr

> INP101 rev2 / CNL70LCD rev1 / SPAI-A rev0 / SPAE-CNL/H rev2 CNL40 rev1.2 / CNL40IG rev2.7 / CNL40IG-4F rev0.1 / CNL40IGNW rev2.0 CNL25IG rev0a.3

> > **Configuration Handbook**

DEVICE PRESENTATION	p3
RS232 LINK CONFIGURATION	p5
TERMINAL MODE	6 0
VISUALIZATION	p6
CONFIGURATION	b 6
1) Method	p6
1.1) Menu selection	p6
1.2) Parameter selection	p6
1.3) Value acquisition	p6
2) Language	p6
3) Inputs	p6
4) Display range	p7
5) Analog output	p7
6) Special function	p7
7) Measure offset	р7
EMC CONSIDERATION	p8
1) Introduction	p8
2) Recommendation of use	p8
2.1) General remarks	p8
2.2) Power Supply	p8
2.3) Inputs / Outputs	p 8
HART COMMUNICATION PROTOCOL	9
1) Implemented Commands in CNL40IGH	p 9
2) Input configuration change	p9
3) Connection for HART communication	p10
4) Using a HC275 HART communicator	p10
	n12
1) General	n12
2) Organization	p12
3) Main technical characteristics	p12
4) Operation	p12
5) Performance	p12
	÷
HART PROTOCOL AND FDT	p13
1) Using PACTWARE software	p13
WIRING	p16
	1
OUTLINE DIMENSIONS	p18
TERMINAL - DEVICE LINK	p20

Device Presentation

1) Head mounting sensors

1.1) <u>CNL40</u>

CNL40: 2 wires Loop powered converter. Measure input: temperature thermocouple or PT100.

LOREME

The technical data sheet is downloadable here: http://www.loreme.fr/fichtech/CNL40.pdf

1.2) CNL40IG / CNL40IG-4F

CNL40IG(NW): 2 wires Loop powered isolated converter. Measure input: temperature (thermocouple or 3 wires PT100), voltage (mV), current (with external 2.5 Ohms shunt).

CNL40IG-4F: 2 wires Loop powered isolated converter. Measure input: temperature (thermocouple or 3 wires PT100), voltage (mV), current (with external 2.5 Ohms shunt).

CNL40IG(NW)H: converter CNL40IG(NW) + HART communication. CNL40IGH-4F: converter CNL40IG-4F + HART communication.

The technical data sheet is downloadable here: <u>http://www.loreme.fr/fichtech/CNL40ig.pdf</u>

1.3) INP101 indicator

It's a loop powered field indicator transmitter. It includes in a single case a programmable converter (CNL40IG(-4F) / IGH(-4F) / CNL40IGNW(H)) and a 4 digits display (10000pts).

The technical data sheet is downloadable here: <u>http://www.loreme.fr/fichtech/INP101.pdf</u>

2) <u>DIN rail mounting</u> 2.1) CNL25D

Loop powered not isolated converter. Input: Temperature measurement (Thermocouple or PT100).

The technical data sheet is downloadable here: http://www.loreme.fr/fichtech/CNL25D.pdf

2.2) CNL25IG-D

2.3) CNL25IG

2 wires Loop powered isolated converter. Measure input: temperature (thermocouple or 3 wires PT100), voltage (mV), current (with external 2.5 Ohms shunt). Output reference voltage for potentiometer input.

CNL25IG-D/H : converter + HART communication.

The technical data sheet is downloadable here: http://www.loreme.fr/fichtech/CNL25IG-D.pdf

2 wires Loop powered isolated converter. Measure input: temperature (thermocouple or 3 wires PT100), voltage (mV), current (with external 2.5 ohms shunt). Output reference voltage for potentiometer input.

The technical data sheet is downloadable here: http://www.loreme.fr/fichtech/CNL25IG.pdf

2.4) CNL70LCD indicator

It's a converter (CNL40IG) with LCD display (10000 points).

The technical data sheet is downloadable here: http://www.loreme.fr/fichtech/CNL70.pdf

3) Ambient temperature measurement

3.1) SPAI - SPAE

2 wires loop powered, ambient temperature measure (outdoor or indoor).

3.2) SPAI-A

SPAI with LCD 10000 points display.

The technical data sheet is downloadable here: http://www.loreme.fr/fichtech/SPAI-SPAE.pdf

RS232 Link Configuration

The device's can visualize the measure and be configured in terminal mode via an RS232 link.

Step 1: Driver installation for USB / RS232 adapter

- download driver at www.loreme.fr:

http://www.loreme.fr/aff_produits.asp?rubid=53&langue=fr

- Click on executable file to install the driver,

- Plug the cable on a USB port, Windows install a new serial communication port **COM**x (x >= 4).

Note:

The use of the cable on another USB port don't generates a new communication port. Use of another adapter generates another communication port number (COMx) and requires the reconfiguration of the HyperTerminal.

Step 2: Setting of terminal emulation software (PC with Windows).

Terminal mode

Visualization

When switching on, the device is automatically put in operating mode and will send periodically the measures like this:

10 mV	measure
11.99 mA	output current.

Configuration

The handbook explains in detail different possibilities of configuration: Language, input, security value, response time, output limitation, special function.

To enter configuration mode, just press the "C" key and follow the configuration procedure.

1) Method

In configuration mode, the user is asked different types of questions. For each one, several answers are possible. You will find below the detailed description of each case.

1.1) Menu selection

example: INPUT (Y-N)

The user makes a choice by pressing the keys "Y" or "N". This choice allows to access the different menus of configuration.

1.2) Parameter selection

example:	VOLTAGE (Y-N)YES	or	VOLTAGE (Y-N)NO		
Previous cl	hoice = YES:	- pressing - pressing	"Y" or "Enter" => "N" => choice cha	> choice valid nging = NO.	lation = YES.
Previous cl	hoice = NO:	- pressing - pressing	"N" or "Enter" => "Y" => choice char	choice valida nging = YES.	ntion = NO.

1.3) Value acquisition

example: LOW SCALE 4 mA

Two cases are possible:

- validation without modification, just press " / EXE",

- value modification on keyboard (simultaneous display), followed by validation with " / EXE".

Note:

- It is possible, when a mistake is made during a value acquisition, before validating it, to go back by pressing on backspace key. This re-displays the message without taking notice of the mistake.
- In configuration mode, if there is no action on a key during 2 minutes, device goes back in measure mode without taking notice of the modifications made before.
- In configuration mode, if you want go back to measure mode without taking notice of modifications made before, just press the escape key.

2) Language

Only the "IG" version have the choice of the language and the supported languages are: English or French.

3) <u>Input</u>

The inputs possibilities are:	- Pt100 3 wires or 4 wires (depending on the version),
	- Thermocouple B, E, J, K, R, S, T, or only N,W3,W5 for the CNL40IGNW.
for the "IG" versions:	- voltage input (mV)
	- current input (with external shunt of 2.5 Ohms).

For each input type, you can choose the low scale and high scale of the measurement range.

4) Display range

The display range converts the input signal to an other physical quantity. This one facilitates the measure reading.

- Ex: input 4-20 mA / Range 0-1000 kg. -> input measure = 12 mA, display = 500 kg.
- For the range configuration it is possible to set:
- The unit.
- The low scale and high scale.
- The number of decimals.

The unit of the range-display is facultative. It allows only to interpret the real value. It is limited to 4 characters and displayed only on the terminal in RS232 communication.

The number of decimals is the number of digit displayed after the decimal point. This number is limited by the input type, the scale of the display range and the device resolution.

5) Analogue output

The devices are 2 wires loop powered transmitters so, the analogue output is a 4-20mA current.

For the output configuration, it is possible to set:

- The security value.
- The response time.
- The limitation.

The security value allows to set the output on a known state when there is a sensor breaking or a measure range overflow.

The response time allows to smooth the analogical output when the measure is fluctuating or exposed to interferences. The value can be set between 0 and 60 seconds.

The limitation clamp the output signal swing to 4/20 mA. Only security value goes beyond the limitation.

6) Special function

The Square root function allows to calculate the square root on the measure percentage relating to the input range (only available with the voltage or current input).

7) Measure offset

Sometimes, it may be interesting to modify measure by a keyboard intervention.

- It can be used in many situations:
 - Sensor's degradation,
 - To calibrate an input with magnifying effect and thus obtaining a better accuracy in the measure window.

To shift the measure, it is necessary: - to be in measure mode,

press "+" or "-", the message "OFFSET" is send on the RS 232:
100.2 DEG measure value corrected

- OFFSET 2 indicate present offset value.
- use "+" and "-" keys to decrement and increment the measure,
- type on "ENTER" to save the offset.

Note:

- The value of the offset is memorized and remains active after a power off/on.

- To cancel the offset, recall the function, put back offset at zero and validate by "ENTER".

EMC Consideration

1) Introduction

To meet its policy concerning EMC, based on the Community directives **2014/30/EU** & **2014/35/EU**, the LOREME company takes into account the standards relative to this directives from the very start of the conception of each product.

The set of tests performed on the devices, designed to work in an industrial environment, are made in accordance with **IEC 61000-6-4** and **IEC 61000-6-2** standards in order to establish the EU declaration of conformity. The devices being in certain typical configurations during the tests, it is impossible to guarantee the results in every possible configurations. To ensure optimum operation of each device, it would be judicious to comply with several recommendations of use.

2) Recommendations of use

2.1) General remarks

- Comply with the recommendations of assembly indicated in the technical data sheet (direction of assembly, spacing between the devices, ...).

- Comply with the recommendations of use indicated in the technical data sheet (temperature range, protection index).

- Avoid dust and excessive humidity, corrosive gas, considerable sources of heat.

- Avoid disturbed environments and disruptive phenomena or elements.

- If possible, group together the instrumentation devices in a zone separated from the power and relay circuits.

- Avoid the direct proximity with considerable power distance switches, contactors, relays, thyristor power groups, ...

- Do not get closer within fifty centimeters of a device with a transmitter (walkie-talkie) of a power of 5 W, because the latter can create a field with an intensity higher than 10 V/M for a distance fewer than 50 cm.

2.2) Power supply

- Comply with the features indicated in the technical sheet (power supply voltage, frequency, allowance of the values, stability, variations ...).

- It is better that the power supply should come from a system with section switches equipped with fuses for the instrumentation element and that the power supply line be the most direct possible from the section switch.

- Avoid using this power supply for the control of relays, of contactors, of electrogates, ...

- If the switching of thyristor statical groups, of engines, of speed variator, ... causes strong interferences on the power supply circuit, it would be necessary to put an insulation transformer especially intended for instrumentation linking the screen to earth.

- It is also important that the installation should have a good earth system and it is better that the voltage in relation to the neutral should not exceed 1V, and the resistance be inferior to 6 ohms.

- If the installation is near high frequency generators or installations of arc welding, it is better to put suitable section filters.

2.3) Inputs / Outputs

- In harsh conditions, it is advisable to use sheathed and twisted cables whose ground braid will be linked to the earth at a single point.

- It is advisable to separate the input / output lines from the power supply lines in order to avoid the coupling phenomena.

- It is also advisable to limit the lengths of data cables as much as possible.

HART communication Protocol

LOREME

The HART protocol use the BELL 202 standard to superimpose a modulated signal to the 4-20mA analogue signal. HART provides a bi-directional numeric communication between devices. The HART communication is base on a Master-Slave data exchange. Two master can be present in the loop and a multi-drop operating mode accommodating up to 15 slave devices.

The HART protocol provides 3 command groups :

- Universal commands : All the slave should implement this commands.
- Common Practice commands : Many slave device implement this commands but not all.
- Device Specific commands : This commands are define to a particular device.

For communicate with the CNL40IGH, a PC + Hart modem with a specific software or a Hand-Held HART communicator as the HC275 can be use.

1) Implemented commands in the CNL40IGH

Universal commands in HART revision 5

- 0 READ UNIQUE IDENTIFIER
- 1 READ PRYMARY VARIABLE
- 2 READ CURRENT AND PERCENT OF RANGE
- 3 READ CURRENT AND FOUR DYNAMIC VARIABLE
- 6 WRITE POLLING ADRESS
- 11 READ UNIQUE IDENTIFIER ASSOCIATE WITH TAG
- 12 READ MESSAGE
- 13 READ TAG, DESCRIPTOR, DATE
- 14 READ PV SENSOR INFORMATION
- 15 READ OUTPUT INFORMATION
- 16 READ FINAL ASSEMBLY NUMBER
- 17 WRITE MESSAGE
- 18 WRITE TAG, DESCRIPTOR, DATE
- 19 WRITE FINAL ASSEMBLY NUMBER

Common-practice commands

- 34 WRITE DAMPING VALUE
- 35 WRITE RANGE VALUES
- 38 RESET "CONFIGURATION CHANGE" FLAG
- 40 ENTER/EXIT CURRENT MODE

The data provides in the command #3 are : - PV : Input measure,

- SV : Display information,
- TV : Cold junction temperature.

2) Input configuration change

The input configuration is display in the Descriptor message field. The first three characters are used :

- MV : Millivolt input voltage.
- MA : Current input.
- PT : PT100 temperature input.
- TCx : Thermocouple temperature input, the third character is for the type of thermocouple (B,E,J,K,R,S,T).

The descriptor message fields is a 16 characters long string. Only the first 3 characters are modify.

To modify the input configuration, write at the beginning of the descriptor message the selected type. If the first three characters are correct, the CNL40IGH will modify its measurement and its scales consequently (the scale of measurement will take the limiting values of the new entry.)

Example:	Input type : voltage mV, scale : 0 / 100 mV
	Descriptor message: MV
	Type the "P" and "T" letters in the Descriptor field. Send to CNL40IGH.
	=> The new input is : PT100 and the scale: -200 / 800°C
	The Descriptor message is : PT

3) Connections for a modem or a HART communicator

4) Using a HC275 HART communicator

E 10

Power On the CNL40IGH, connect and power on the communicator. The information display are GENERIC : XXXXX and ON-LINE.(XXXXXXX define the TAG. LOREME as default), the input measure, the output current and the scale. At this point and using this fast key sequence, you can access to different parameters. For example:

Low scale	:	4							
High scale	:	5							
Damping	:	1, 3, 6							
TAG	:	1, 4, 4, 2							
Input type	:	1, 4, 4, 4							
=> The first three	characters c	lefine the input :	MV, MA,	PT, TCB,	TCE, TCJ.	, TCK, T	CR, TC	S. TO	СТ

Generic Online Menu Tree:

FDT technology

1) General

The FDT technology standardizes the communication interface between field devices and systems.

FDT is an open standard, manufacturers independent for configuration and integration of field instruments in systems. FDT is the result of a discussion begun in the 90's to solve the problems generated by the proliferation of digital instruments. It provides a comprehensive and uniform management of the various equipments in workshops software, control system, etc...

2) Organization

FDT-JIG (Field Device Tool Joint Interest Group).

3) Main technical characteristics

- Technology based on COM/DCOM.
- A DTM is an ActiveX that run in a container (software frame).

4) Operation

- Software frame (Pactware, Fieldcare, FieldMate,...) can open drivers (DTM) to manage, configure and optimize field equipment.
- Each manufacturer develops its equipment to a descriptive file called DTM (Device Type Manager).
- The DTM of active equipment in the process are called DeviceDTM, an equipment who have only a communication function are called CommDTM.
- The DTM contains all specific parameters of the device, the features available and the user interface.
- A DTM can only provide a basic setup. It can also provide access to diagnosis or maintenance functions.
- It is mandatory to have a DeviceDTM for each unit. If the manufacturer doest not deliver, this equipment may still be configured with the standard profiles.

5) Performance

- A single tool for configuring various types of equipment from different manufacturers communicating in different protocol.
- Centralization of operations thought communication « meshed ».
- Access to settings and improved ergonomics.
- Better use of the capabilities of digital instruments.
- Suitable for process and manufacturing.
- The DTM are often free and provided with equipment.

HART protocol and FDT

1) Using PACTWARE software

1.1) DTM LoGenhart FDT Driver installation

Unzip the LoGenHart_setup.zip file (download at www.loreme.fr) and run the SETUP program. At the end of installation, restart the PC.

Run the Pactware program. Press the 'F3' key or go to 'View/device catalog'

Once the catalog open, click on 'update device catalog'. A new device must appears in the list : 'Generic Hart DTM' with 'Loreme SA' as vendor.

1.2) Device configuration with Pactware

In this example, the modem is a hart modem connect to the serial port 'COM1'.

To communicate with a HART device, define a 'GENERIC' device.

In the 'Device' menu, choose 'Add device' and select 'GENERIC HART DTM / Loreme SA'.

Appareil pour				×			
🖃 🛃 Tous les appareils	Tous les appareils\Loreme SA						
E CodeWrights GmbH	Apparel	A Protocole	Fabricant				
Honeyweii Honeyweii Honeyweii Loreme SA Port PR PR electronics	1997 Generic HART DTM	HART	Loreme SA				
Fabricant Groupe Type Protocole	_						
Loreme SA Composante(s) DTM	HART Capteur						
			OK	Annuler			

Once the link established, read the device information with the 'Load from device'.

Projet	ą	x	-
tiquette de l'appareil			
PC Hôte			
HMM COM1			
Generic HART DTM	20-	Etablir liaison	-
	12	Terminer liaison	
	(CI)	Live données de l'annavel	
	10	Errire données dans l'apparei	-
		Parametre	
		Yaleur mesurée	
		Simulation	
		Diagnostic	
		Imprimer	
		Autres fonctions	•
	12	Ajouter apparel	
	R	Enlever apparel	
		Propriétés <0 Generic HART DTM>Generic HART DTM	
		Ptopriétés <0, Generic HART DTM>Generic HART DTM	

E 14

At the end of the reading, the name of the device become 'LOREME'. This name is the TAG name.

The input configuration is contained in the first three characters of the 'DESIGNATION' message: => MV, MA for respectively a voltage or a current input, => PT_TCB_TCE_TCL_TCK_TCB_TCS_TCT for a PTD input or B_E_LK_B_S_T Thermocouple input

After any change in the configuration, you have to write the new configuration in the device. For that, in the 'Device' menu, choose 'Store to device'.

Fichier Edition Affichage Projet App	pareil <u>Outils F</u> enêtre <u>Aide</u>			
「「「「「」」」 「「「」」」 「「」」 「「」 「」 「」 「」 「」 「」	Terminer liaison			
Projet 4 ×	Lire données de l'appareil	Dia	gnostic	
D PC Hôte	Ecrire données dans l'appareil	DT	M Inconnu 2.0	
COM1	Paramètre	•	959,5972 [°C]	
	Valeur mesurée	. 8	a •	
	Simulation			
	 Diagnostic	-		
	Imprimer		PT	9
	Autres <u>f</u> onctions	•	LOREME	- 1
-0	Aiouter appareil		NO MESSAGE	<u> </u>
	E <u>nl</u> ever appareil		31/03/2005	
	Propriétés <0,LOREME>Generic HA	RT DTM		
i	alibrer l'appareil	Fabricant	Inconnu	
		Type de capteur	238	- 1
		Numéro de série	0	
		Numéro de capteu	r [1	
		Identification	1000401	

Wiring

CNL40 - CNL40IG/H

- mV input
- mA input with 2.5 Ω external shunt
- RTD 100 Ω (3 wires)
- Thermocouple input
- Loop power supply

- : Terminals 4 (+), 3 (-)
- : Terminals 4 (+), 3 (-)
- : Terminals 4 (+), 3 (-), 5 (line)

LOREME

- : Terminals 4 (+), 3 (-)
- : Terminals 1 (+), 2 (-)

CNL40IG/H - 4F

- mV input
- mA input with 2.5 Ω external shunt
- RTD 100 4 wires
- Thermocouple input
- Loop power supply

- : Terminals 4 (+), 3 (-)
- : Terminals 4 (+), 3 (-)
- : Terminal 6 (polarization +), 5 (measure +),
- 4 (measure -), 3 (polarization -)
- : Terminals 4 (+), 3 (-)
- : Terminals 1 (+), 2 (-)

CNL25D МКLЈGН POWER TES N K L J G H RTD Access control Action Action D В 888888 ACBDFE : Terminals D (+), E (-), F (line) : Terminals D and F(+), E (-) : Terminals D (+), E (-)

Thermocouple inputLoop power supply

- RTD 100 3 wires

- RTD 100 2 wires

- 'TEST' loop current

: Terminals G (+), H (-)

: Terminals K (+), L (-)

999

ī †

88

E 17

Outline dimensions

LOREME

SPAI-A

Fixation

CNL70LCD

E 18

LOREME 12, rue des Potiers d'Etain - 57071 Metz 🖀 03.87.76.32.51 - Email: Commercial@Loreme.fr - Technique@Loreme.fr

INP101

Terminal - Device link

LOREME

CNL25IG - CNL25IG-D

